Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2011.12740v2

ABSTRACT

Activity reductions in early 2020 due to the Coronavirus Disease 2019 pandemic led to unprecedented decreases in carbon dioxide (CO2) emissions. Despite their record size, the resulting atmospheric signals are smaller than and obscured by climate variability in atmospheric transport and biospheric fluxes, notably that related to the 2019-2020 Indian Ocean Dipole. Monitoring CO2 anomalies and distinguishing human and climatic causes thus remains a new frontier in Earth system science. We show, for the first time, that the impact of short-term, regional changes in fossil fuel emissions on CO2 concentrations was observable from space. Starting in February and continuing through May, column CO2 over many of the World's largest emitting regions was 0.14 to 0.62 parts per million less than expected in a pandemic-free scenario, consistent with reductions of 3 to 13 percent in annual, global emissions. Current spaceborne technologies are therefore approaching levels of accuracy and precision needed to support climate mitigation strategies with future missions expected to meet those needs.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL